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Cavity-coupled plasmonic structure is demonstrated to be a simple and effective tool to manipulatelight,
enhance the biosensing figure of merit, and control the polarization state. In this Letter, we demonstrate
the tunability of the chiroptical effect of cavity-coupled chiral structure, i.e., sandwich chiral metamaterials
(SCMs), in whichradiation coupling dominates the interaction between particles. Two types of SCMs whose
building blocks are 3D chiral and 2D chiral, respectively, are numerically studied. Distinct responses are observed
in these two materials. The chiroptical effect can be effectively manipulated and enhanced in the 2D case, while
the SCMs consisting of 3D chiral layers keep the chiroptical effecta constant. A theoretical analysis based on
matrix optics is developed to explain the corresponding phenomena, which gives a reasonable agreement with
numerical simulations.

OCIS codes: 160.1585, 160.4760, 160.3918.
doi: 10.3788/COL201614.061602.

The chiroptical effect, including circular dichroism (CD)
and optical activity (OA), derives from higher-order
effects. The largest contributions are from the electric di-
pole-magnetic dipole (dipolar) and electric dipole-electric
quadrupole (quadrupolar) interactions. This chiroptical
effect paves the way for the enantiomer biosensor[1,2]

and manipulating the polarization states of light[3–5].
Recently, chiral metamaterials (CMMs) composed by
electric or magnetic resonators have been demonstrated
to be an effective tool to enhance the chiroptical effect.
Typical chiroptical effects can be divided into two groups,
3D chirality and 2D chirality. 3D chirality widely exists in
natural materials and can be found in artificial 3D CMM[3]

and 2D CMM, which has high symmetry such as gamma-
dions[6], crosses[6,7], and any metal particles arranged in
fourfold rotational symmetry[6,8,9]. 3D chiral structures
can result in OA and the associated phenomenon of
CD. The corresponding matrix for the isotropic 3D-chiral
medium is the diagonal matrix[10,11]. Planar CMMs are
often 2D chiral types such as fish scale[10], split ring[12,13],
‘L’ particle[14], and so forth. Detections of circular conver-
sion dichroism (CCD) took place for 2D-chiral metamole-
cules. The transmission matrix for a planar chiral medium
is a nonHermitian matrix with equal diagonal elements.
The similarity of 3D and 2D chirality is that they both
have total transmission difference, while a difference in
both the magnitudes and phase of the diagonal terms in
the transmission matrix is linked to 3D chirality, and a
difference in magnitudes of the off-diagonal terms is linked
to 2D chirality. Due to the convenient processing technol-
ogy, planar CMMs are often manufactured and sandwich

chiral metamaterials (SCMs) are frequently utilized to
enhance the chiroptical effect[6,7,9,13,15].

To date, most SCMs are arranged with a short vertical
spacing. In this approach, the magnetic dipole can be
easily excited and the corresponding electromagnetic
response can be understood within the plasmon hybridiza-
tion model[16]. However, the particle’s resonance is domi-
nated by quasi-electrostatic forces for short vertical
spacing. The radiative effect is neglected, and the influ-
ence of the Fabry–Perot (FP) cavity is dramatically sup-
pressed. Based on the past research, the cavity-coupled
plasmonic structure can be a simple and effective method
to manipulate the light, enhance the biosensing figure of
merit, and control the polarization state[17]. Particularly,
FP resonance can enhance the spin Hall effect in layered
nanostructures and the spin-dependent displacements for
the CMMs can reach as high as several tens of wavelengths
at certain incident angles[18,19]. Combining the above ad-
vantages, the SCMmay provide a possible way to enhance
the photonic spin Hall effect.

Additionally, active chiral plasmonics have attracted a
considerable amount of interest due to their tunability of
the chiroptical effect and the potential applications in
highly integrated polarization sensitive devices[20]. Much
new research about tailoring the electromagnetic response
with FP cavity-coupled SCMs have been published in
recent years[21–23], while the reports about tailoring the chi-
rality are rare. Indeed, the transmission and reflection
efficiencies of SCMs can be periodically manipulated by
changing the cavity length, which can be understood by
far-field coupling[16]. Thus, a natural expectation is that,
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by inducing the FPcavity mode into the SCM, we can
tailor the chiroptical effect and enhance it.
In this Letter, we demonstrate the tunability of the

SCM’s chiroptical effect in the far-field coupling region.
Two types of SCMs that consist of metamaterials with
3D chirality and 2D chirality are numerically calculated.
It is found that we can effectively manipulate and enhance
the chiroptical effect by the SCM whose building block is
2D chiral. However, for the SCM consisting of 3D chiral
media, only the transmitted intensity is periodically tail-
ored, the chiroptical effect remains unchanged during the
variation of spacer thickness. In the theoretical analysis,
we explain the above phenomena from the view of matrix
optics. Good agreement has been achieved between the
theoretical analysis and numerical results.
The right circular polarization (RCP) and left circular

polarization (LCP) in this Letter are the base vectors and
denoted as ‘þ’ and ‘−’. The transmission/reflection coef-
ficients can be defined by Em ¼ tmnE0

n∕Em ¼ rmnE0
n,

where ‘m’ and ‘n’ are the polarized states of output and
incident light. The Jones matrix is used to characterize
the materials and is defined as

t̂ ¼
�
tþþ tþ−

t−þ t��

�
and r̂ ¼

�
rþþ rþ−

r−þ r��

�
: (1)

The intensity and phase of the corresponding matrix
components are denoted by Tmn ¼ jtmnj2, Rmn ¼ jrmnj2,
φt;mn ¼ argðtmnÞ, and φr;mn ¼ argðrmnÞ.
According to the basic definition, the CD and OA can

be calculated as

CD¼Tþ −T−

Tþ þT−

and OA¼ argðtþþÞ− argðt−−Þ;

Tþ ¼Tþþ þT−þ and T− ¼T−− þTþ−: (2)

While the usual 2D chiral particle is anisotropic, the cal-
culated formula of OA can not be applied. However, for
linearly polarized incident light, the transmitted light’s
azimuth angle α can be calculated by the Stokes param-
eters. To do this, the linearly polarized light is incident
along the horizontal orientation and the azimuth angle
is calculated instead of OA, for the 2D chiral particles,

tanð2αÞ ¼ 2jtxx jjtyx j cos φdiff

jtxx j2 − jtyx j2
; (3)

where φdiff ¼ argðtyxÞ− argðtxxÞ. Based on the standard
finite-difference time domain (FDTD) method, we begin
our analysis by using commercial software FDTD Solu-
tions. The periodic boundary conditions are applied to
the x and y directions and the perfect matching layer
boundary to the z direction.
First, the 3D chiral structures, gammadions, are used to

construct SCMs, as shown in Fig. 1(a). For one single
chiral gammadion, the length of w, L1, and L2 are 50,
250, and 125 nm, respectively, and the thickness (H ) is

50 nm. The lattice constant is px ¼ py ¼ 350 nm. The
middle layer between the top and bottom chiral media
and the substrate are made by dielectric media SiO2 with
a refractive index of 1.46. The thickness of the middle
dielectric layer (dz, FP cavity length) is adjusted from
6 to 1200 nm to investigate the influence of the chiral
FP cavity length in simulations. The material parameter
of gold is chosen from the software database (Gold
Johnson Christy).

Figure 1(b) shows the transmission efficiencies and the
CD spectra at a resonant wavelength of 612.7 nm as a
function of dz. As is shown, when dz is larger than
100 nm, Tþþ and T�� periodically change with a period
of 260 nm. 3D chirality is present from the difference be-
tween co-polarized components, and 2D chirality is absent
due to the cross-polarized components being equal to zero.
The polarization eigenstate is still circular polarization.
Please note that the variations of Tþþ and T�� are syn-
chronous when dz changes from 200 to 1200 nm, resulting
in the CD curve remaining unchanged. Thus, we can
hardly tune the CD by adjusting the cavity length. In
the short spacing region (6 to 200 nm), the CD transforms
rapidly; a large CD value is obtained at dz ¼ 60 nm.

Similarly, OA changes quickly during the variation of
dz from 6 to 200 nm and then remains the same from
200 to 1200 nm [Fig. 1(c)]. A maximum value of OA occurs
at dz ¼ 60 nm. Figure 1(d) shows the CD and OA spectra
of a single gammadion layer and the SCM with dz ¼
60 nm. An obvious enhancement of the chiroptical signal
is obtained from SCMs near the wavelength of 612.7 nm.

Figure 2 is the color map of CD, OA, Tþþ, and T�� as a
function of wavelength and the cavity length dz. Large CD
and OA values can be found when dz is smaller than

Fig. 1. Simulation results of an SCM consisting of 3D chiral par-
ticles. (a) Schematic of SCMs formed by the gammadion array.
(b) Simulated transmission efficiencies and CD at a resonance
wavelength of 612.7 nm. (c) The phase of tþþ, t�� and OA as
a function of dz at a wavelength of 612.7 nm. (d) The simulated
CD and OA of the single- layer chiral media and the SCM with
dz ¼ 60 nm.
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200 nm since, in the short dz region, the interaction is
mediated by quasi-electrostatic forces between the par-
ticles. We clarify that this giant chirality is caused by the
near-field coupling. Beyond this region, CD and OA re-
main constant while a periodic modulation effect due to
an FP cavity is observed for Tþþ and T�� in the whole
band. The transmittance efficiencies Tþþ and T�� are
very similar. However, they are indeed different, but with
just a small difference. The characteristic of the 3D chiral-
ity is shown, due to this small difference.
From the figures, it can be seen that it is hard for the

SCM to tailor the chiroptical effect as a function of cavity
length if the SCMs are comprised of 3D chiral media. The
giant chiroptical response is observed when the FP length
is smaller than 200 nm, which is attributed to the near-
field coupling effect. The property of an unchanged
chiroptical effect will be explained later from the view
of matrix optics.
The SCM formed by an “L” particle, which has definite

2D chirality, is studied as shown in Fig. 3(a). The
width (W ), height (H), length (L1), and short arms
(L2) of a single L-shape nanostructure are 80, 50, 240,
and 120 nm, respectively. The lattice constants px and
py are 340 and 220 nm, respectively.
Figure 3(b) depicts the transmitted efficiencies and CD

spectra at a resonance wavelength of 677.2 nm. Compared
with the last case, the CD curve shows a dramatic differ-
ence in the far-field coupling region. In another words, the
CD changes periodically during the variation of dz from
150 to 1200 nm, indicating that this SCM type can tailor
the CD periodically like tailoring the transmission efficien-
cies. A large CD value of about 0.64 is also obtained at a
large cavity length (110, 370, 680, and 980 nm) and re-
peats at a period about 300 nm. Additionally, the varia-
tions of transmitted efficiencies are still periodic, but not
synchronous. Both 2D chirality and 3D chirality are ob-
served due to Tþ− ≠ T−þ and Tþþ ≠ T��. Similarly,
the azimuth angle α exhibits a period change in the

far-field coupling region in Fig. 3(c). Thus, the SCM of
this type can tailor not only the CD but also α at a
remarkable level.

Comparing with the single-layer building block
[Fig. 3(d)], the CD of the SCM with dz ¼ 980 nm is dra-
matically enhanced by 3.5 times. α is also enhanced, as
shown. This shows that the SCM can obtain a huge chi-
roptical effect not only in the short vertical spacing, but
also at a very large spacing if the building block has 2D
chirality. A much stronger SCM chiroptical effect can
be realized by further design of the shape features.

Figure 4 contains the color maps of CD, azimuth angle
α, transmission efficiencies as a function of wavelength,
and the cavity length. In Fig. 4(a) we can observe a peri-
odic modulation of CD at a resonance wavelength
677.2 nm (marked by the white dash line). The maximum
CD value at dz ¼ 110, 370, 680, and 980 nm are nearly
the same.

Figure 4(b) shows a periodic variation for the azimuth
angle α. The change of transmission efficiencies is still peri-
odic in Fig. 4(c)–4(f), and the difference between Tþ− and
T−þ, and Tþþ and T�� are more evident along the wave-
length of 677.2 nm.

In a word, SCMs consisting of 2D chiral particles can ef-
fectively tailor the CD andOA spectrum in the large cavity
distance. The corresponding chiroptical effect is also en-
hanced, indicating that a new route to control the chirop-
tical effect is open. Next, we will theoretically analyze the
above chiral behavior from the view of matrix optics.

In the far-field coupling region, each layer of CMM
arrays can be regarded as a single layer of media and the
behavior of the SCM can be understood by multiple reflec-
tions in the cavity, as shown in Fig. 5(a). Matrix optics is
used here to decide the Jones matrix of the SCM.

Fig. 2. (a) Simulated CD, (b) OA, (c) Tþþ, and (d) T�� for the
SCMs consisting of 3D chiral particles as a function of wave-
length and cavity length.

Fig. 3. Simulation results of the SCM consisting of 3D chiral
particles. (a) A schematic of SCMs formed by the ‘L’ particle.
(b) Simulated transmission efficiencies and CD at a wavelength
of 677.2 nm. (c) The azimuth angle α as a function of dz at a
wavelength of 677.2 nm. (d) Simulated CD and α of the single-
layer chiral media and the SCM with dz ¼ 980 nm.
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To simplify the discussions, we consider the first two
transmitted lights to decide the transmitted lights

t̂fSCM ¼ t̂f2 × t̂f1 × eikd þ t̂f2 × r̂b2 × r̂ f1 × t̂f1 × e3ikd ; (4)

where d is the distance between the chiral media 1 and 2,
k ¼ k0 × ne, k0 is the wave vector in the vacuum, ne is the
effective index of the middle layer between the media 1
and 2, d is the cavity length, and ‘f ’ and ‘b’ denote the
forward and backward propagation directions. The influ-
ence of the substrate and middle spacer is neglected, thus
media 1 is identical with media 2. Once the reflection and
transmission properties of single chiral media are known,
we can predict the SCM’s chiral property (CD, OA) from
the analytic Eq. (4).
For the chiral media that has 3D chirality, a single

media’s matrix can be expressed as

t̂f ¼
�
tþþ 0
0 t��

�
and r̂ f ¼

�
0 rþ−

r−þ 0

�
: (5)

The form of t̂f is different from r̂ f but has the same
meaning of 3D chirality[24,25]. As is known, the definition
of circularly polarized light is reversed after being re-
flected. Thus, the co/cross-polarization light in transmis-
sion turns into cross/co-polarization light in reflection.
For the 3D chirality, the off-diagonal elements in the
transmission matrix are zero. Thus, in reflection, the
diagonal elements should also be zero.
Additionally, we know that the reflection coefficient of

the 3D chiral media is the same for the LCP and RCP[26,27],
i.e., rþ− ¼ r−þ ¼ r :0. Thus, we have

r̂ f ¼ r̂b ¼
�
0 r0
r0 0

�
: (6)

Substituting Eqs. (5) and (6) into Eq. (4), the expres-
sion of SCM’s Jones matrix and the corresponding CD and
OA are

tSCM;þþ ¼ t2þþ × eikd × ð1þ r20e
2ikdÞ;

tSCM;−− ¼ t2−− × eikd × ð1þ r20e
2ikdÞ;

tSCM;þ− ¼ tSCM;−þ ¼ 0;

CD ¼ jtþþj4 − jt−−j4
jtþþj4 þ jt−−j4

;

OA ¼ 2 × ðφt;þþ − φt;−−Þ: (7)

The theory-deduced equations agree with the simula-
tion results and show that the SCM is still 3D chiral,
the change of co-polarization coefficients is synchronous,
and the resulting CD and OA are constant during the
variation of d. Thus, in this case, the chiroptical effect
is always unchanged, no matter how far the two CMM
layers are separated, and mainly depends on the property
of the single media.

For the single 2D chiral media, each element in the
transmission and reflection matrix is nonzero, leading

Fig. 4. (a) Simulated CD, (b) azimuth angle α, (c) Tþþ,
(d) Tþ−, (e)T−þ, and (f) T�� for the SCMs consisting of ‘L’
chiral particles as a function of wavelength and cavity length.

Fig. 5. Theory model of SCM and analytic fitting curves.
(a) Schematics of the transmission of the SCM. Analytic fitting
curves of (b) CD and (c) OA for the SCM consisting of gamma-
dion arrays at a wavelength of 612.7 nm. Analytic fitting curves
of (d) CD and (c) azimuth angle α for the SCM consisting of “L”
particle arrays at a wavelength of 677.2 nm.
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the final formula to be complex and long. Corresponding
analysis should take all elements’ influence into consider-
ation, although it is still hard to simplify the formula
and get a general conclusion. However, as Eq. (4) is
known, we can quantitatively study the behavior of the
SCM. We extract the simulated transmission/reflection
coefficients of the single layer and substitute these data
at the resonance wavelength into the SCM’s analytic
model, Eq. (4). The fitting curves about the gammadion
and “L” particle array are plotted in Figs. 5(b)–5(e). As is
shown, for the SCM whose building blocks are 3D chiral,
the analytic formula predicts that its CD value remains
unchanged during variation of the cavity length.
Theory-predicted OA is also plotted in Fig. 5(c), which
is a constant, while for the SCM consisting of 2D chiral
particles the response versus periodicity remains the same,
and the magnitude of the fitting transmission efficiencies
and the CD are similar to the simulation results. Both
2D and 3D chirality are also observed. Compared with
simulation results, the fitted azimuth angle α is shifted up,
but the response versus periodicity is similar. Thus, the
simulated chiroptical effect can be interpreted from the
matrix optics.
The analytic model presented here has a good predic-

tion of the chiral behavior of the SCM, which has a similar
change tendency with the simulated results. The misfit
may be attributed to the ignorance of the high-order
transmitted wave and the accuracy of the extracted data.
Except for this, Eq. (4) is general and valid for the SCM
whose bottom and top layers are identical.
In conclusion, we demonstrate a new method to tune

the chiroptical effect by coupling the FP cavity with the
SCM. Two types of SCM are studied. Particularly, the
SCM consisting of a 2D chiral particle can effectively tailor
the enhanced chiroptical effect by adjusting the cavity
length, while the SCM whose building block is 3D chiral
keeps the chiroptical effect unchanged. Matrix optics is
developed and the corresponding fitting curves have a rea-
sonable agreement with the simulation results. Our study
has not only shed new light on the understanding of the
chiroptical effect in SCMs, but also has provided a unique
pathway toward broad applications.

This work was supported by the National Natural
Science Foundation of China under Grant No. 61377054.
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